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Abstract

By taking pixels of image sequences as moving gas molecules, a novel concept, image temperature, is proposed to de-

scribe the natural property of the image motion. The idea comes from the revelation of the Maxwell-Boltzmann Distribution Law in gas dy-

namic theories. Furthermore, another concept of energy flow corresponding to the optical flow is developed, and the method of the energy

flow equation (EFE) is established to estimate image motion. The experiment indicates a better performance of the proposed EFE scheme

with significantly reduced false motion estimates when compared to the traditional optical flow equation (OFE).
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The optical flow has been defined as a convenient
representation for image motion or the displacement
field for any pixel in an image sequence. A common
assumption in measuring image motion is that the in-
tensity structures of local time-varying image regions
are approximately constant under motion for at least a
short duration. Let S(x, y, t) denote the image in-
tensity function, and an optical flow equation can be
derived based on this hypothesis.

dS(z, y,t) _
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where x and y vary by ¢ according to the motion tra-
jectory. Eq. (1) is a total derivative expression and
denotes the rate of change of intensity along the mo-
tion trajectory. Using the chain rule of differentia-
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However, the optical flow equation (OFE) has
been directly derived from the liquid flow equation

which describes the liquid density variation during its

(1 OFE would produce many false motion

flowing
estimates, which cannot be detected by naked eyes,
and reduces the precision of motion estimates. The
purpose of this paper is to develop a new physical
model to describe the image motion, which substi-
tutes for the traditional optical flow model. In this
paper, we first put forward a novel concept, image
temperature, then based on the concept, an equation
which is defined as the energy flow equation (EFE) is
developed to compute the image motion field. The
idea comes from the gas molecule distribution law in
the gas dynamic theories. By taking pixels of image
sequences as moving gas molecules, we deduce a for-
mula to compute the image temperature. Based on the
formula, we can change the luminance image data,
which is our experimental input data. Based on the
analytic method of the optical flow, we develop the
concept of energy flow and deduce the EFE. By using
the proposed EFE based on OFE scheme, real motion
vectors are obtained and false motions are reduced sig-
nificantly.

1 Gas dynamic theories and the Maxwell-
Botzmann distribution law

Maxwell studied gas molecule distributing char-
acters in 1859, and deduced the gas molecule velocity

distributing function in the equilibrium state[z],

Z.UZeZkT, (3)
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where m denotes the molecule mass, v the average
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molecule velocity, T the gas temperature, and & the
Boltzmann constant. This equation is the Maxwell
distribution law that describes the essential property
of gas molecule movement.

Based on the Maxwell distribution law, Boltz-
mann studied the distribution of micro-particles with
called

Maxwell-Boltzmann distribution law, which can com-

discrete energy. He deduced the formula,

pute micro-particle number with different discrete en-
ergies. Suppose micro-particles can only own a series
of discrete energies and their values are orderly ¢,
€25, €, ***, so0 the number of micro-particles with
energy €; is

N = C-e o/, (4)

where C is a constant not related to «;.

The average kinetic energy of an ideal gas
molecule is

e = 5 mo’. (5)
From Eqgs. (3), (4) and (5), we know that

Egs. (3) and (4) are all bell-shaped functions of ve-
locity v;.

The Maxwell-Boltzmann distribution law quanti-
tatively represents the essential property of gas
molecule movement, and it is applied very widely to
solid physics, laser and contemporary physics.

2 Image temperature

Based on the gas dynamic theories, the gas tem-
perature is the result of molecules moving randomly
and is determined by the number of gas molecules and
their average kinetic energy. The latter depends on
their motion velocity. Supposing that pixels of an im-
age sequence and gas molecules have similar property
on random movement, and these pixels can move
ceaselessly like gas molecules. The Maxwell-Boltz-
mann distributing law can also describe the statistic
property of pixels motion of image sequences.

Pixels of image sequences would be seen as the
moving gas molecules, and we believe that any posi-
tion of an image in video would own a certain “tem-
perature”, and the temperature will be defined as
“image temperature”. The image temperature is de-
termined by the kinetic energy of the pixel and the
number of the pixels with the same kinetic energy

corresponding to the definition of the gas tempera-

ture. The kinetic energy of the pixel depends on the
motion velocity of the pixel. We now develop the e-
quation for computing the image temperature. Based
on Eqgs. (4) and (5), we obtain

2
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to proceed, we have
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where m denotes the pixel “mass”. Suppose that all

T:

pixels mass are identical, and setting m as one), v,
denotes the pixel motion velocity equals to the pixel
gray value, N; the number of the pixels whose gray

value equals v; within a certain time interval Bl

n
this paper, the time interval t refers to the duration

of a GOP, % and C are constants.

From Eq. (7), it can be seen that, the tempera-
ture of any position in an image is determined by the
motion velocity of the pixel at that position and the
number of the pixels with the same motion velocity v;
within the time interval z. So the temperature image
sequence can be obtained from Eq. (7).

3 Energy flow equation

As we stated above, any position of an image
corresponds to a certain temperature, so the following
hypothesis of the image motion estimation is reason-
able. Suppose that the image temperature structures
of local time-varying image regions are approximately
constant under motion for at least a short period. Let
T(x, y, t) denote the continuous spatial-temporal
temperature distribution. If the temperature remains
constant along a motion trajectory, we have

dT(z,y,t)
dz
where x and y vary by ¢ according to the motion tra-

=0, (8)

jectory. Eq. (8) is a total derivative expression and
denotes the rate of change of image temperature along
the motion trajectory. The remainder of this paper
will deduce the equation for computing energy flow

fields.

At time ¢, the image temperature at the point
{(z,y) of an image is T{(x, y, t). At time ¢t + At,
the point will move to a new position (x + Az, y +
Ay), its image temperature is T(z + Az, y + Ay, ¢
+ At). Supposing that T(z + Az, y + Ay, t + At)
is equal to T(x,y,t), we have

T(x,y,t) = T(x + Az,y + Ay, t + At).(9)
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Expanding the right part of Eq. (9) by Taylor ex-
pansion, and ignoring the terms exceeding the
square, we have
AT (x,v,1) T (x,y,¢t)
cu + v
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gradient of the image temperature, u = dr and v =

dy .
g‘ are the horizontal and vertical temperature image
t

velocity displacements, respectively, and T(x, v, t)
is the image temperature at the position (.r, y) ob-
tained from Eq. (7). Because the temperature is the
measure of gas molecule kinetic energy in gas dynamic
theories, Eq. (8) can be called the energy flow equa-
tion (EFE) or the energy flow constraint.

4 Motion estimation by EFE

Estimating the optical flow is a fundamental is-
sue in the image sequence processing, and there are
many different methods to estimate the optical flow.
Because there are two variables of the optical flow
field in an expression, solving Eq. (2) is an “ill-
posed” problem, and we can only compute the optical
flow field along the gradient direction.

Regularization (a smoothness constraint) by re-
quiring a slowing varying optical flow field was first
introduced by Horn and Schunck!*! to solve the OFE
of Eq. (2). In the implementation of Horn and
Schunck method, the Laplacians of the velocity com-
ponents have been approximated by FIR high-pass fil-
ters to arrive at a Gauss-Seidel iteration. In order to
compare the energy flow field with the optical flow
field impartially, solving the EFE and the OFE si-
multaneously uses the Horn and Schunck’s method.

The Gauss-Seidel iterative method, Eq. (11), is

used in implementing the Horn and Schunck
method®! to solve the energy flow based on the data
from two consecutive frames.
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where n is the iteration counter, the overbar denotes
weighted local averaging, and all partials are evaluat-
ed at the point (x, vy, t). The initial estimates of ve-
locities #‘® and v‘? are usually taken as zero.

Eq. (11) assumes a continuous spatial-temporal
temperature distribution. In computer implementa-
tion, all spatial and temporal gradients need to be es-
timated from the discrete temperature image data ob-
tained from Eq. (7). Both average finite differences
and polynomial fitting have approximated the spatial
and temporal gradients. We make use of the averag-
ing four finite differences to obtain the estimation of
spatial and temporal gradients in Eq. (11). For two
consecutive frames £ and £ + 1, the image tempera-
ture gradients are estimated as
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and the local averages # and v are estimated as
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This iterative process stops when the energy flow
counted in the current iteration does not change much
from that of a previous iteration, e.g. the Maximum
Square Error (MSE) or Maximum Absolute Differ-
ence ( MAD) less than some threshold value or the
number of iterations reaches a certain value, i.e. the
maximum iteration count.

5 Experiment

EFE and OFE have been used to estimate the

Fig. 1.

value of difference image of imuge (a) and image (b)

Experimental image sequence and frame difference

(a)

Fig. 2. Motion fields estimated from Fig 1

Fig. 2(b) shows that the mouon field estimated
by EFE fits the actual motion more accurately, and
avoids much of the false motion estimated by OFE in
Fig. 2(a), which cannot be detected by the naked
eyes.

We evaluate the goodness of the motion esti-
mates on the basis of the peak signal-to-noise ratio
(PSNR) of the resulting displaced frame difference
(DFD) between the 488th and 489th frames, defined
by

‘motion field between the 488th and the 489th frames
of a progressive video, known as the “News” se-
quence and shown in Fig. 1 (a) and (b), respective-
ly. Fig. 1(c) shows the absolute value of the frame
difference (multiplied by 3) without any motion com-
pensation, which is to indicate the amount of motion
present. The lighter pixels are those whose intensity
has changed with respect to the pervious frame due to
the motion. Indeed, the scene contains multiple mo-
tions: the speaker is raising her head (from down to
up), her mouth is opening, and the background mon-
itors at up-left and down-right are changing. The
motion fields estimated by the OFE and the EFE are
depicted in Fig.2 (a) and (b), respectively.

(c)

(a) The 48Rth intensity image; (b) the 489th 1ntensity image; (¢) absolute

(b)

(a) Motion field estimated by OFE; (b) motion field estimated by EFE.

255 « 255
(1 Sulivg) = Syeli + dy(is )y + dali i) 1)
(14)

where d; and d, denote components of the motion es-

PSNR = 10log,,
“d

timates at every pixel. We also compute the entropy
of the estimated 2-D motion field, given by

H =~ > P(d)logP(d,) = > P(dy)log,P(d,),

(15)
where P(d) and P(d,) denote the relative frequen-
cy of occurrence of the horizontal and vertical compo-
nents of moticn vector d. The PSNR and entropy of
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EFE and OFE are listed in Table 1 (after 20 itera-
tions) .

Table 1. Comparison of OEF and EFE methods

Method PSNR(dB) Entropy(bits)
OFE 18.691 3.207
EFE 19.178 3.168

6 Discussions and conclusions

Based on the gas dynamic theories and the optical
flow analytic method, a new concept, the image tem-
perature, is introduced to estimate the image motion
field. The motion field estimated by EFE is clearly
improved, compared to that estimated by the tradi-
tional OFE. The experiment testified the rationality
and availability of the EFE.

Computation of the optical flow field is a hot re-
search area. In order to improve computing results,
many scholars have imposed solutions. Nage1[5] has
imposed the directional-smoothness method in 1986,
which improves significantly the performance of the
motion estimates. Tretiak'® believed that the optical
field computing was a differential problem and im-
posed an accessorial constraint based on the second-or-
der differential operator. Terzopoulusm has presented
a better directional-smoothness method. Those meth-
ods improved significantly the performance of the mo-

tion estimates by OFE. We believe that those meth-
ods maybe also give us a better performance of the
motion estimates by EFE, and it is our future work.

EFE represents the essential property of a pixel
movement in an image sequence. | herefore, EFE can
be applied to object tracking, shot detection, scene
analysis and video indexing, etc.
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